Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites

نویسندگان

  • Trong Nguyen-Duc
  • Eveline Peeters
  • Serge Muyldermans
  • Daniel Charlier
  • Gholamreza Hassanzadeh-Ghassabeh
چکیده

Nanobodies® are single-domain antibody fragments derived from camelid heavy-chain antibodies. Because of their small size, straightforward production in Escherichia coli, easy tailoring, high affinity, specificity, stability and solubility, nanobodies® have been exploited in various biotechnological applications. A major challenge in the post-genomics and post-proteomics era is the identification of regulatory networks involving nucleic acid-protein and protein-protein interactions. Here, we apply a nanobody® in chromatin immunoprecipitation followed by DNA microarray hybridization (ChIP-chip) for genome-wide identification of DNA-protein interactions. The Lrp-like regulator Ss-LrpB, arguably one of the best-studied specific transcription factors of the hyperthermophilic archaeon Sulfolobus solfataricus, was chosen for this proof-of-principle nanobody®-assisted ChIP. Three distinct Ss-LrpB-specific nanobodies®, each interacting with a different epitope, were generated for ChIP. Genome-wide ChIP-chip with one of these nanobodies® identified the well-established Ss-LrpB binding sites and revealed several unknown target sequences. Furthermore, these ChIP-chip profiles revealed auxiliary operator sites in the open reading frame of Ss-lrpB. Our work introduces nanobodies® as a novel class of affinity reagents for ChIP. Taking into account the unique characteristics of nanobodies®, in particular, their short generation time, nanobody®-based ChIP is expected to further streamline ChIP-chip and ChIP-Seq experiments, especially in organisms with no (or limited) possibility of genetic manipulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems

Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have l...

متن کامل

Motif discovery and transcription factor binding sites before and after the next-generation sequencing era

Motif discovery has been one of the most widely studied problems in bioinformatics ever since genomic and protein sequences have been available. In particular, its application to the de novo prediction of putative over-represented transcription factor binding sites in nucleotide sequences has been, and still is, one of the most challenging flavors of the problem. Recently, novel experimental te...

متن کامل

Chromatin profiling in model organisms.

The correct control of gene expression is essential for the proper development of organisms. Abnormal expression of genes can lead to cancerous growth and certain diseases. To understand how gene expression is controlled on a genome-wide scale, methods for assaying transcription factor binding sites are required. There are two prevailing techniques for mapping protein-chromatin interactions, Ch...

متن کامل

Discovering Transcription Factor Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relev...

متن کامل

Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction

The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction. Hence, the complete identification of HIF targets is essential for understanding the cellular responses to hypoxia. Herein we describe a computational strategy based on the combination of phylogenetic footprinting and transcription profiling meta-analysis for the identificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013